
A Longitudinal Field Study on Creation and Use
of Domain-Specific Languages in Industry

Jasper Denkers
Delft University of Technology & Océ Technologies B.V.

Delft, The Netherlands
j.denkers@tudelft.nl

ABSTRACT
Domain-specific languages (DSLs) have extensively been investi-
gated in research and have frequently been applied in practice for
over 20 years. While DSLs have been attributed improvements in
terms of productivity, maintainability, and taming accidental com-
plexity, surprisingly, we know little about their actual impact on
the software engineering practice. This PhD project, that is done
in close collaboration with our industrial partner Océ - A Canon
Company, offers a unique opportunity to study the application of
DSLs using a longitudinal field study. In particular, we focus on
introducing DSLs with language workbenches, i.e., infrastructures
for designing and deploying DSLs, for projects that are already
running for several years and for which extensive domain analy-
sis outcomes are available. In doing so, we expect to gain a novel
perspective on DSLs in practice. Additionally, we aim to derive
best practices for DSL development and to identify and overcome
limitations in the current state-of-the-art tooling for DSLs.

CCS CONCEPTS
• Software and its engineering→Domain specific languages.

KEYWORDS
domain-specific languages, language workbenches, model-driven
engineering, longitudinal field study
ACM Reference Format:
Jasper Denkers. 2019. A Longitudinal Field Study on Creation and Use of
Domain-Specific Languages in Industry. In Proceedings of the 27th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn,
Estonia. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3338906.
3341463

1 INTRODUCTION
Developing software in complex domains becomes harder when
the scale at which it is being performed increases. At the same time,
the value of many products is highly reliant on the quality and
capabilities of the software that ships with it. In light of the ever
increasing demand from society for more advanced products, these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3341463

factors indicate the importance of advancing the most important
tools software engineers use: programming languages.

Encoding business domain concepts into these programming
language is a core challenge in software engineering [15]. Model-
driven engineering (MDE) [8, 11] is a method in which such con-
cepts are identified and encoded on a higher level of abstraction
than what typically would occur in a general purpose programming
language (GPL). It is based on introducing programming constructs
for specific domains, enabling the modeling of business concepts
more effectively. Such constructs enable representing crucial parts
of complex systems better in software, aimed at improving the
overall software engineering process in terms of quality, productiv-
ity, and maintainability. A particular direction of applying MDE is
using domain-specific languages (DSLs) [5]. DSLs embed the encod-
ing of business abstractions in specific tailor made programming
languages. However, developing and applying DSLs in practice is
non-trivial due to the requirement of language engineering skills.
Language workbenches are tools that promise to make language
engineering more accessible by providing infrastructures for devel-
oping and deploying DSLs. While using language workbenches has
a big potential, clear methodology for their application in practice
is lacking.

We propose to evaluate the state-of-the-art in language work-
benches for developing DSLs. The context of the research is our
industrial partner Océ, a large digital printer manufacturing com-
pany. Océ’s software research and development department has
experience in applying MDE for over 10 years, and in some projects
also with using DSLs. More recently, the company experiments with
developing such DSLs with language workbenches. While early
results are promising, the company struggles to scale the adoption
of the technology. Training engineers is hard. The engineers that
develop DSLs feel like having to “reinvent the wheel” for particu-
lar language engineering tasks like code generation, because best
practices and clear DSL design patterns are lacking. It is unclear
to what extent tool characteristics influence the success of intro-
ducing DSLs. Despite the widely recognised potential of DSLs and
language workbenches, the above problems still make investing in
DSL technology in industry risky.

By applying MDE in many projects, Océ obtained extensive
domain knowledge for complex domains like modeling behavior,
performance, and physical aspects of printing systems. The domain
analysis outcomes of these projects are valuable assets for experi-
menting with DSL development. In addition, the environment has
the potential for big impact by DSL solutions. For example, print-
ers interface with finishing devices (e.g. booklet makers) that are
produced by external companies. The integration between such

1152

https://doi.org/10.1145/3338906.3341463
https://doi.org/10.1145/3338906.3341463
https://doi.org/10.1145/3338906.3341463

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jasper Denkers

finishing devices and Océ printers has a significant software compo-
nent and it is currently a time and cost expensive process. Therefore,
there are also interesting opportunities to experiment with the us-
age of DSLs as a means to integrate externally produced devices
with the software fromOcé, potentially with the external companies
as users of such DSLs.

The environment at Océ thus provides a unique opportunity to
study DSL development with language workbenches. Our objective
is to identify best practices and development patterns. In particular,
we qualitatively compare their impact on the software engineer-
ing process with respect to more traditional MDE approaches. In
addition, we aim to identify limitations in current state-of-the-art
tooling. Our approach is a longitudal field study [10] in which we
perform multiple DSL engineering case studies at Océ. For these
cases, we focus on a particular type of projects. These projects
should apply MDE techniques, for which domain analysis has al-
ready been carried out, and for which an existing implementa-
tion using traditional technologies is already present. Second, the
projects do not already use a DSL, or if they do use a DSL, it is
not developed using a language workbench. Finally, the projects
involve a domain that is sufficiently complex such that the engi-
neers working on it struggle with advancing their solutions in the
existing approach.

2 BACKGROUND
Domain-Specific Languages (DSLs) [5]. DSLs are programming

languages specific for a particular (business) domain. Higher levels
of abstractions in these languages, in contrast to general purpose
languages (GPLs), provide opportunity for improving software en-
gineering on several aspects, e.g., productivity and quality. Addi-
tionally, DSLs can help to apply development methodologies that
depend on abstractions, e.g., MDE. For adopting DSLs, the engineers
applying them ideally have full-fledged integrated development
environments (IDEs) including editor services like syntax highlight-
ing, interactive error reporting, and refactorings.

Language workbenches (LWBs) [4]. LWBs are tools specific for
developing DSLs and deriving IDEs. They provide convenient meth-
ods to implement syntax, semantics, transformations, and code
generation for languages. LWBs that support language modularity
and composition, enabling reuse language components, lower the
threshold to start developing DSLs with good software engineering
practices. Language workbenches differ e.g. in supported notations
(textual, graphical, or projectional) and maintainers (academic or
industrial). An overview and comparison of language workbenches
is given in [2, 3].

3 RESEARCH QUESTIONS
The underlying goal of this work is to advance the capabilities
of handling software engineering complexity. To this extent, we
investigate a particular approach to achieve this goal: apply domain-
specific languages developed with language workbenches on MDE
projects at Océ. This leads to several software engineering research
questions related to usefulness and feasibility, which we categorize
by the types as identified by Shaw [13].

Our first research question is of type “methods or means of
development”:

RQ-Patterns: What are useful patterns for developing DSLs
with language workbenches for MDE in an industrial setting?

While many well-known and evaluated design patterns are avail-
able for general software engineering [6], the available patterns
specific to DSL engineering are limited. This hinders the devel-
opment of DSLs, since engineers new to the technology feel like
having to “reinvent the wheel”. In our work we aim to develop and
evaluate patterns in DSL development that have the potential of
being generally useful.

Our other three research questions are of the type “design, eval-
uation, or analysis of a particular instance”:

RQ-Effectiveness: Do DSLs developed with language work-
benches improve MDE in an industrial setting in terms of soft-
ware engineering productivity, quality, and maintainabilty?

For maintaining a competitive market position, the quality and
capabilities of the products Océ produces is most important. There-
fore, we focus on the effectiveness of DSL solutions to improve
the company’s software engineering to deliver advanced products.
Using DSLs is only useful if these capabilities actually improve. In
particular, we focus on comparing effectiveness in comparison with
existing MDE approaches present at Océ.

RQ-ROI: Does the benefit gain of DSLs using language work-
benches in an industrial setting outweighs their development
cost? Is there return on investment (ROI)?

While applying DSLs might be useful, they have a certain devel-
opment cost. It is only feasible in practice to apply DSL technology if
the value improvement or effort reduction they introduce outweigh
the cost required to develop the DSLs.

RQ-Tooling:Are state-of-the-art language workbenches useful
for developing DSLs for MDE in an industrial setting? What are
their limitations?

We focus on language workbenches as the tools to develop DSLs
and to derive IDEs for the DSLs. They intend to decrease the effort
required to develop DSLs and to improve the quality, maintainabil-
ity, and usability of DSL implementations. With this question we
focus on evaluating the state-of-the-art in language workbenches.

4 METHODOLOGY
We apply the design research method. In particular, we instantiate
Hevner’s design science framework [21] (Figure 1). It incorporates
behavioral aspects, relevant for doing research in an industrial en-
vironment. The proposed research builds on existing foundations
and methodologies for developing DSLs. In addition, it takes the
business needs that arise from the environment into account. Given
both sources, we will perform several iterations of case studies
of developing and evaluating DSL artifacts. The artifacts will be
applied at Océ and thus have to contribute to the industrial envi-
ronment. Answers to the research questions will contribute back
to the knowledge base.

1153

A Longitudinal Field Study on Creation and Use of Domain-Specific Languages in Industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Environment Research Knowledge Base
Océ
 - Strategy

Collaborators

Clients

People
- Roles
- Capabilities

Technology
 - Existing products
 - MDE solutions

Foundations
 - Language engineering
 - Constraint programming

Methodologies
 - Formalisms
 - Measures
 - Validation criteria
 - Language workbenches
 - MDE

Develop/Build
 - DSL artifacts
 - IDEs
 - Design patterns

Evaluate
 - Case Study
 - Survey

RefineAssess

Business
Needs

Applicable
Knowledge

Application
at Océ

Additions
to Knowledge Base

Figure 1: An instantiation of Hevner et al.’s design science framework [21] for the proposed research.

Environment. Océ is characterized by the development of high-
end products. This is part of the company’s strategy and implies
the need for development of advanced software. There are multiple
categories of potential DSL users: Océ’s own employees, external
companies producing devices that interface with Océ printers, and
clients that configure their systems. Last, an important part of the
environment is the software for existing products and the MDE
solutions that are used. These aspects define the problem space in
which we perform our research.

Knowledge Base. We build on a knowledge base consisting of
foundations and methodologies relevant to our work. In particular,
we apply existing language engineering techniques and tools. In ad-
dition, we experiment with combinations of technologies. For exam-
ple, a DSL with constraint solving as a backend enables declarative
notations, and fuses DSL technology with constraint programming.

DSL Implementations. Weuse the Spoofax languageworkbench [7,
16] for the development of our DSLs. This limits the scope of the
tooling perspective and allows us to focus on evaluation of a par-
ticular type of language workbench. For Spoofax, important char-
acteristics are that notation is textual and the maintaining party is
a research group.

5 RELATEDWORK
Voelter et al. reported on several industrial applications of the MPS
language workbench. mbeddr [20] introduces extensions to the
C language that introduce abstractions specific for the domain of
embedded software. The authors evaluate mbeddr in the context of
developing a smart electricity meter [17]. They found that it helps
significantly in managing complexity, it improves testability, it re-
duces development effort, and all without introducing memory or
performance overhead. Besides the positive outcomes, the authors
note that adopting mbeddr might be difficult due to developers
lacking skills and because of adaptions to the development pro-
cess. The authors also evaluate the language workbench itself for
developing mbeddr rather than evaluate the case on the language

level [19]. The outcomes are generally positive: language modu-
larity helps managing complexity, the advantages of projectional
editing outweigh its drawbacks, and using declarative meta-DSLs
for implementing certain DSLs aspects help in managing language
implementation complexity. Most recent, the authors propose an
architecture for the application of MPS for implementing a DSL
in a safety-critical domain [18]. An industrial case study in the
healthcare domain validates the architecture and the authors plan
to apply the approach in other domains as well.

Additionally, Kelly and Tolvanen reported on several industrial
case studies performed with the MetaEdit+ language workbench.
In [14], they focus on evaluating effort. For ten cases, the required
implementation effort was between 3 and 15 man-days, with an
average of 10 days.

Schuts’ thesis [12] reports on the experiences of applying DSLs
in industry for system evolution. DSLs have been developed using
the Xtext language workbench and they found that DSLs provide
a way to solve industrial problems in less time that with previous
ways of working. For several projects the outcome had a positive
ROI.

The aforementioned recent work evaluated the impact of ap-
plying DSLs using LWBs in industrial software engineering. Their
focus was on specific language workbenches with distinct nota-
tion formats. First, MPS, based on projectional editing. Second,
MetaEdit+, based on graphical editing. Third, Xtext, based on tex-
tual notations. Amongst notation, the language workbenches differ
on other aspects. While the conclusions drawn in these studies are
generally positive, they provide too little evidence to generalize
over the findings [9]. It is unclear to what extent the results are
biased by tool characteristics. All authors mentioned in this section
indicate the need for additional studies with applications in other
contexts and with applying other tools.

6 CURRENT ACHIEVEMENTS
The author of this work is in his second year of his PhD. In the first
year, he worked on the migration of existing DSL implementations

1154

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jasper Denkers

developed and used at Océ to a language workbench [1]. In particu-
lar, this case study involved languages for defining interfaces (IDL)
and modeling system behavior (OIL) that were implemented with
XML for syntax and Python for static analysis and code generation.
The target language workbench was Spoofax. Besides migrating
the implementations, he introduced a new concise DSL syntax and
additional functionality, including cross-language static analysis.
This work contributed a general pattern for adopting language
workbenches for already existing DSLs implemented with custom
technologies (RQ-Patterns). The author is currently involved in
the further development of OIL. At the time of writing, a paper is
in progress that presents a general pattern for implementing model
transformation pipelines (RQ-Patterns). The language is nearing
the stage at which it is ready for application in production. From
that point, the evaluation considering the other research questions
will start.

In parallel, the author is working on a project called Sheela (Sheet
Language). This project focuses on the modeling of configurations
of printers and finishers and concerns their integration. The ex-
isting MDE solutions are several versions of C# frameworks that
model physical aspects of sheets and actions on sheets required for
integrating printers with finishers. In this project, we experiment
with a declarative DSL with constraint solving as the backend (RQ-
Patterns). The aim is to have executable specifications, automatic
validation, and deriving optimal parameters for jobs requested for
given specifications (RQ-Effectiveness). Currently, Océ software
engineers integrate finishers using the C# framework, which is a
costly process. With the new DSL, the objective is to improve this
process, and investigate the possibility to have external finisher pro-
ducing companies as users of the DSL to reduce overall integration
costs (RQ-ROI).

7 EXPECTED CONTRIBUTIONS
Our intended research contributions come from several DSL arti-
facts. First, we intend to contribute design patterns that are eval-
uated in several case studies. Second, we aim to report on the
evaluation of the state-of-the-art in language workbenches in an
industrial setting. Third, we expect to contribute to tooling with
respect to the ability of handling large scale models. Finally, the
author intends to summarize his findings in a technology transfer
paper in the final year of his PhD. This will report from a higher
perspective on the performed case studies and the observations
made. The goal is that it will provide useful insights in what impacts
adopting LWBs for DSLs in industry by giving an overview of the
lessons learned from the case studies performed at Océ.

8 EVALUATION
We evaluate RQ-Patterns by assessing the usefulness of the ap-
plication of the introduced patterns in the case study DSLs. We
evaluate RQ-Effectiveness by qualitatively comparing DSL solu-
tions with their existingMDE engineering counterparts. In addition,
where possible, we survey DSL users and engineers about their ex-
periences with both old and new approaches. For RQ-ROI, we
measure the effort for developing DSLs. We estimate the value im-
provement or effort reduction that is the result of the DSLs to get

an indication of return on investment. We evaluate tooling (RQ-
Tooling) by benchmarking implementations on large models and
by surveying users of the language workbenches on both the meta
level (language engineers) and user level (language users).

ACKNOWLEDGEMENTS
The author is advised by Prof. Dr. Eelco Visser and Dr. Andy Zaid-
man. This research is funded by a grant from the Top Consortia
for Knowledge and Innovation (TKIs) of the Dutch Ministry of
Economic Affairs and from Océ.

REFERENCES
[1] Jasper Denkers, Louis van Gool, and Eelco Visser. 2018. Migrating custom DSL

implementations to a language workbench (tool demo). In Proc. ACM SIGPLAN
International Conference on Software Language Engineering. ACM, 205–209.

[2] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, et al. 2013. The state of the art in language workbenches. In International
Conference on Software Language Engineering. Springer, 197–217.

[3] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, et al. 2015. Evaluating and comparing language workbenches: Existing
results and benchmarks for the future. Computer Languages, Systems & Structures
44 (2015), 24–47.

[4] Martin Fowler. 2005. Language workbenches: The killer-app for domain specific
languages. (2005).

[5] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Pat-

terns: Elements of Reusable Object-Oriented Software Addison-Wesley. Reading,
MA (1995), 1995.

[7] Lennart CL Kats and Eelco Visser. 2010. The spoofax language workbench: rules
for declarative specification of languages and IDEs. InACM sigplan notices, Vol. 45.
ACM, 444–463.

[8] Stuart Kent. 2002. Model driven engineering. In International Conference on
Integrated Formal Methods. Springer, 286–298.

[9] Parastoo Mohagheghi and Vegard Dehlen. 2008. Where is the proof?-A review
of experiences from applying MDE in industry. In European Conference on Model
Driven Architecture-Foundations and Applications. Springer, 432–443.

[10] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. 2012. Case study
research in software engineering. In Guidelines and examples. Wiley Online
Library.

[11] Douglas C Schmidt. 2006. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY- 39, 2 (2006), 25.

[12] MTW Schuts. 2017. Industrial Experiences in Applying Domain Specific Languages
for System Evolution. Ph.D. Dissertation. [Sl: sn].

[13] Mary Shaw. 2003. Writing good software engineering research papers. In 25th
International Conference on Software Engineering, 2003. Proceedings. IEEE, 726–
736.

[14] Juha-Pekka Tolvanen and Steven Kelly. 2018. Effort Used to Create Domain-
Specific Modeling Languages. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. ACM, 235–244.

[15] Eelco Visser. 2015. Understanding software through linguistic abstraction. Science
of Computer Programming 97 (2015), 11–16.

[16] Eelco Visser, Guido Wachsmuth, Andrew Tolmach, Pierre Neron, Vlad Vergu,
Augusto Passalaqua, and Gabriël Konat. 2014. A Language Designer’sWorkbench:
A One-Stop-Shop for Implementation and Verification of Language Designs.
In Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. ACM, 95–111.

[17] Markus Voelter, Arie van Deursen, Bernd Kolb, and Stephan Eberle. 2015. Using
C language extensions for developing embedded software: a case study. In ACM
SIGPLAN Notices, Vol. 50. ACM, 655–674.

[18] Markus Voelter, Bernd Kolb, Klaus Birken, Federico Tomassetti, Patrick Alff,
Laurent Wiart, Andreas Wortmann, and Arne Nordmann. 2018. Using language
workbenches and domain-specific languages for safety-critical software develop-
ment. Software & Systems Modeling (2018), 1–24.

[19] Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, and Arie van Deursen.
2017. Lessons learned from developing mbeddr: a case study in language engi-
neering with MPS. Software & Systems Modeling (2017), 1–46.

[20] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. 2013. mbeddr:
Instantiating a language workbench in the embedded software domain. Auto-
mated Software Engineering 20, 3 (2013), 339–390.

[21] R Hevner Von Alan, Salvatore TMarch, Jinsoo Park, and Sudha Ram. 2004. Design
science in information systems research. MIS quarterly 28, 1 (2004), 75–105.

1155

	Abstract
	1 Introduction
	2 Background
	3 Research Questions
	4 Methodology
	5 Related work
	6 Current Achievements
	7 Expected Contributions
	8 Evaluation
	References

